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I. Categorization of Visual Saliency Methods 

①  Bottom-up VS. Top-down 
 
 

② Image Saliency VS. Video Saliency  
       or Static Saliency VS. Dynamic Saliency 
 
③Deep learning based VS. Non-deep-learning 

based 
 

…… 
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 Problems Left Unsolved 

From Image Saliency to Video Saliency 
I. Features used at the Temporal Dimension: Motion 
II. The way to watch (plenty of time v.s. limited time) 
III. Memory effect 

 
 
 
 
 

“ attention can also be guided by top-down, memory-dependent, 
or anticipatory mechanisms, such as when looking ahead of 
moving objects or sideways before crossing streets. ” from 
wikipedia.org 
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II.  Existing VS Estimation Methods 
1. Extension of 2D model (i.e. static saliency model) 

 
 
 
 

Seo, H.J.J., Milanfar, P.: Static and space-time visual saliency detection by self-
resemblance,Journal of Vision 2009 

Mahadevan V, Vasconcelos N. Spatiotemporal Saliency in Dynamic Scenes[J]. IEEE 
Transactions on Pattern Analysis & Machine Intelligence, 2010, 32(1):171. 
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2. Static Saliency + Dynamic Saliency 
     or Image Feature + Motion Features 

Guo, C., Zhang, L.: A novel multiresolution spatiotemporal saliency detection model and its 
applications in image and video compression. TIP 57 (2010) 1856-186 

CIELab color 
values +  the 
magnitude of 
optical flow 

Rahtu, E., Kannala, J., Salo, M., Heikkil�a, J.: Segmenting salient objects from images and videos. 
In: ECCV. (2010)  

II.  Existing VS Estimation Methods Cont. 
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III. Our First Effort on VS Temporality 

S_image 
[1] 

S_motion 

S_fused 

Frames 

[1] S. Goferman, L. Zelnik-Manor, and A. Tal. Context-aware saliency detection. In CVPR, 2010. 
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Frames 

Saliency 
maps 

   Problems of Existing VS method 

Observations:   
1. Objects (including salient objects) in a video share strong 

temporal coherence.  
2. Saliency estimation methods usually do not consider it,  e.g. the 

detection of the coach instead of the football player.  
3. A relatively long-term temporal coherence without memory 

affected is needed to estimate video saliency (VS). 
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   Without Temporal Coherence  

t 
y 

x 

Results by detecting the most salient object in each frame as 
the  Salient Object of the Video (SVO) 
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    Temporal Coherence Enhanced 

t 
y 

x 

Results of the Salient Object of the Video (SVO) when 
considering the long-term temporal coherence. 
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Our  Method via Optimal Path Discovery[1] 

1. Objective function: salient video objects can be detected by 
finding the optimal path which has the largest accumulated saliency 
density in a video. 

*
( )arg max ( ( )),p pathp D p∈=


Where                                                           , and d is the saliency 
density of a searching window centered at            , and p is a path 
starting from the starting point to the end point. 

( , , )

( , , )
( ) ( , , ) e e e

s s s

x y t

x y t
D p d x y t=∑

( , , )x y t

[1]Ye Luo, Junsong Yuan and Qi Tian, “Salient Object Detection in Videos by Optimal Spatial-temporal 
Path Discovery”, ACM multimedia 2013, pp. 509-512.  
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( , ) ( , -1) i
u t
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( ) ( , ) ( , )u t
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D p w v t -1 d u t= ×∑

The temporal coherence of  two windows centred at                   and v 
can be calculated as: 

( , )u x y=

2.  Handling Temporal Coherence: 

The objective function of our salient video object detection becomes: 
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3. Dynamic Programming Solution 

Every pixel in a frame is scanned with a searching window and a 
path is associated with it. 
 
The path is elongated  from                 to              on the current 
frame and the accumulated score along the path is updated as: 
 
 
 
 
 
To adapt to the size and the position changes of the salient objects, 
multi-scale searching windows are used. 

*
(u) (u,t)

* *
(u,t)

max { ( , t 1) ( , t 1) d (u ,t)}

( , t 1) ( , t 1) d (u ,t)
v Nv A v w v

A(u,t) A v w v
∈= − + − ×

= − + − ×

*(v ,t -1) (u,t)
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Experiment Settings 
Two datasets:  
1. UCF-Sports: 150 videos of 10 action classes 
2. Ten-Video-Clips: 10 videos of 5 to 10 seconds each 
 
Compared Methods: 
1. Our previously proposed MSD[13] 
2. Optimal Path Discovery (OPD) Method[17] 
 
Evaluation Metrics:  

 (1 )pre ,  rec ,  F-measureg d g d

d g

S S S S pre rec
S S pre rec

α
α

× × + × ×
= = =

× +
∑ ∑
∑ ∑

[13] Ye Luo, Junsong Yuan, Ping Xue and Qi Tian, “Saliency Density Maximization for Efficient Visual 
Objects Discovery”, in IEEE TCSVT, Vol. 21, pp. 1822-1834, 2011.  
[17] D. Tran and J. Yuan. Optimal spatio-temporal path discovery for video event detection. In CVPR, 2011. 
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Experiments on UCF-Sports Dataset 

First row: original frames; Second row: video saliency maps  
Third row: our method ; Fourth row: MSD[1]. 
The blue mask indicates the detected results while the orange ones are 
the ground truth. 
[1]Ye Luo, Junsong Yuan, Ping Xue and Qi Tian, “Saliency Density Maximization for Efficient Visual Objects Discovery”, in IEEE 
TCSVT, Vol. 21, pp. 1822-1834, 2011.  
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Experiments on UCF-Sports Dataset 

Table. Averaged F-measure (%) ± Standard Deviation for ten types 
of action videos in UCF-sports dataset. 

[13] Ye Luo, Junsong Yuan, Ping Xue and Qi Tian, “Saliency Density Maximization for Efficient Visual 
Objects Discovery”, in IEEE TCSVT, Vol. 21, pp. 1822-1834, 2011.  
[17] D. Tran and J. Yuan. Optimal spatio-temporal path discovery for video event detection. In CVPR, 
2011. 
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Experiments on Ten-Video-Clips Dataset 

Precision, recall and F-measure comparisons for our method to 
MSD and OPD on Ten-Video-Clips dataset. 
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   Motivation 

1. Conspicuity based models lack explanatory 
power for fixations in dynamic vision 

Temporal aspect can significantly extend the kind of 
meaningful regions extracted, without resorting to higher-
level processes.  

 
2. Unexpected changes and temporal synchrony 

indicate animate motions 
Temporal synchronizations indicate biological movements 
with intentions, and thus meaningful to us.  



iLab@Tongji, 2018.01 

The Proposed Method 

1. Definition of our video saliency:  
Video Saliency = Abrupt Motion Changes + Motion            

Synchronization + Static Saliency  
2. A hierarchical framework to estimate saliency in videos 

from three levels: 
• The intra-trajectory level saliency 
• The inter-trajectory level saliency 
• Spatial static saliency[1] 

3. The basic processing unit: a super-pixel trajectory[2] 

{ , , , , },   is a superpixels k eTr R R R R=  

[1] Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: NIPS. (2007) 545–552 
[2] Chang, J., Wei, D., III, J.W.F.: A video representation using temporal superpixels. In: CVPR. (2013) 2051-2058 
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      1. The intra-trajectory level saliency 
capturing the change of a super-pixel along a trajectory to 
measure the onset/offset phenomenon and sudden 
movement 

The size and the displacement changes of a super-pixel along  time 
axis  

max max
int

1
(R ) 2

 or   1 

kk
disp s esz

i ik
ra i sz disp

s e
i i

RR t k t
S R R

k t k t

  ∆∆
< <+   = ∆ ∆  

 = =
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1. The intra-trajectory level saliency cont. 
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2. The inter-trajectory level saliency 
Synchronized motions existing between different parts of human bodies.  
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     2. The inter-trajectory level saliency  
using mutual information to measure the synchronization 
between two trajectories 

{ }1    ( ) and , , 3log
( , ) 2

0

ii jj s e
j i

i j

C C
Tr Tr t t

MI Tr Tr C
Otherwise

 ⋅
∉Ν ≥

= 





int int(R ) ( ) max (MI( )) Hk
er i er i j i j iS S Tr Tr ,Tr= = ×

The spatial-temporal neighbors of Tr5 (i.e. R_5) at frame k and frame k + 1. 
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 2. The inter-trajectory level saliency cont. 

The super-pixel (in red) has different levels of synchronization to other super-pixels 
(in other colors ) which are corresponding to various parts of both fencers. 
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3. Fusing Scheme and Others: 
1. Normalization 

• Spatial level:  normalized into [0,1] per frame  
• Intra-level and inter-level: normalized into [0,1] per video 
 

2. Fusion scheme for each super-pixel on frame k 
 

 
3. Camera Motions: RANSAC, homograph 

estimation,  and motion compensation 
 
4.  Inhibition-of-Return: Not considered in this paper 

( ) ( )int int
1 (R ) S (R ) S (R )
3

k k k k
i static i ra i er iS R S= + +
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Experimental Settings 

Four datasets: 
• UCF-sports: eye tracking data 
• ASCMN: eye tracking data 
• Ten-video-clip: human labeled mask 
• Interaction dataset: self-collected dataset with human labeled 

masks provided 
 

Four evaluation metrics 
• Area under Receiver Operating Characteristics Curve (ROC-AUC) 
• Normalized Scanpath Saliency (NSS) 
• Linear Correlation Coefficients (CC) 
• True positive rate vs. false positive rate curve 
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Experimental Results 

31 

1. Comparisons with 3 methods on employed four datasets  
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2. Performance of individual component of our method  

Findings: 
1. Marginally improvements are obtained: inter-level saliency  +  the 

static saliency or the intra-level saliency + static saliency.  
2. All three levels together, there is a substantial increase in 

performance 

Experimental Results cont. 
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3. Video clip length vs. performance 

Findings:  
1. In accordance with human’s short-term memory,  there is a upper-

limit of the length of the video clip used in our method, e.g. 6 second. 
2. Under the upper limit of the video length, longer time durations 

generally improves the performance  

Experimental Results cont. 



iLab@Tongji, 2018.01 
[12] Seo, H.J.J., Milanfar, P.: Static and space-time visual saliency detection by self-resemblance,Journal of Vision 2009 
[17] Rahtu, E., Kannala, J., Salo, M., Heikkil�a, J.: Segmenting salient objects from images and videos. In: ECCV. (2010)  
[34] Guo, C., Zhang, L.: A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression. TIP 57 (2010) 1856-186 

First row: fixation maps; Second row: our results; Third row: results of 
[12]; Fourth row: results of [17] and the fifth row:  results of [34].  Our 
results better fit to the human fixations than other methods. 
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[12] Seo, H.J.J., Milanfar, P.: Static and space-time visual saliency detection by self-resemblance,Journal of Vision 2009 
[17] Rahtu, E., Kannala, J., Salo, M., Heikkil�a, J.: Segmenting salient objects from images and videos. In: ECCV. (2010)  
[34] Guo, C., Zhang, L.: A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression. TIP 57 (2010) 1856-186 

First row: human labeled masks; Second row: our results; Third row: 
results of [12]; Fourth row: results of [17] and the fifth row:  results of 
[34].  Our results  correctly detect the two fencers instead of the judge 
passing by. 
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 Experimental Results 
Demo 
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  Motivation 

 Simple spatial pooling method such as grids does 
not keep the pertinent structure of various actions. 
 

 Current saliency assisted models lack the 
explanatory power for the intention of an action 
and the ability to differentiate animated from 
inanimated motions. 
 

 Some generic low-level features exist and can 
make various actions stand out of the background. 
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  Main Idea 

1. Basic processing unit: a super-pixel trajectory[1]  

{ , , , , } s k eTr R R R=  

R is the superpixel (e.g. the red head). 

[1] J. Chang, D. Wei, and J. W. Fisher III. A video representation using temporal superpixels. 
In CVPR,2013. 



iLab@Tongji, 2018.01 

  Main Idea:    2. Actionness Map Generation 
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 Main Idea Cont. 

3. The pipeline of our actionness-driven pooling 
scheme on action recognition 

Actionness Map 
Estimation 

Dense Trajectory 
Features 
Extraction 

K-
Means 

Feature 
Pooling 

Bag-of-
Feature 

Feature 
Concatenation 

Linear SVM 
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  Experimental Results 
1. Action Detection: Mean average precision (mAP) of 

action Detection on the UCF-Sports and HOHA  datasets 
 
 
 

[9] W. Chen, C. Xiong, R. Xu, and J. Corso. Actionness ranking with lattice conditional ordinal random fields. In CVPR, 2014. 
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 Experimental Results Cont. 
2. Action Recognition 
 Comparison with Two Baseline Methods: 

method with BoF[35] and BoF with Spatial-
Temporal pyramid Pooling (BoF-STP) [21]. 

 
 

[21] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. Learning realistic human actions from 
movies. In CVPR, pages 1–8, 2008. 
[35] H.Wang and C. Schmid. Action Recognition with Improved Trajectories. ICCV, 2013 
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2. Action Recognition 
 Comparison with the State-of-the-art Methods 

Experimental Results Cont. 

[2]N. Ballas, Y. Yang, Z.-Z. Lan, B. Delezoide, F. Preteux, and A. 
Hauptmann. Space-time robust representation for action recognition. 
In ICCV, 2013. 
[5] H. Boyraz, S. Masood, B. Liu, M. Tappen, and H. Foroosh.Action 
recognition by weakly-supervised discriminative region localization. 
In BMVC,2014. 
[22] S. Narayan and K. Ramakrishnan. A cause and effect analysis of 
motion trajectories for modeling actions. In CVPR, 2014. 
[23] X. Peng, L. Wang, X. Wang, and Y. Qiao. Bag of Visual Words 
and Fusion Methods for Action Recognition: Comprehensive Study 
and Good Practice. ArXiv , 2014. 
[24] X. Peng, C. Zou, Y. Qiao, and Q. Peng. Action recognition with 
stacked fisher vectors. In ECCV, 2014. 
[25] S. S. Rajagopalan and R. Goecke. Detecting self-stimulatory 
behaviours for autism diagnosis. In ICIP, 2014. 
[31] S. Sundar Rajagopalan, A. Dhall, and R. Goecke. Selfstimulatory 
behaviours in the wild for autism diagnosis. In ICCV Workshops, 
2013 
[32]E.Taralova, F de la Torre, and M.Hebert.Motion words for videos. 
ECCV, 2014. 
[34]H. Wang, A. Kl¨aser, C. Schmid, and C.-L. Liu. Dense 
trajectories and motion boundary descriptors for action recognition. 
IJCV, 2013. 
[35]H.Wang and C. Schmid. Action Recognition with Improved 
Trajectories. ICCV, 2013 
[39] J. Zhu, B. Wang, X. Yang, W. Zhang, and Z. Tu. Action 
recognition with actons. In ICCV, 2013 
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3. Performance on Different Types of Actions 
 

 

Experimental Results Cont. 

Accuracy Comparisons within HMDB51 
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Individual attributes comparisons in HMDB51 

Sensitivity analysis of K in HMDB51 

 Experimental Results Cont. 
4. Others 
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 Experimental Results Cont. 
Actionness Maps for Various Actions in HMDB51 
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